Count the number of rows and columns of a Pandas dataframe
There are indeed multiple ways to get the number of rows and columns of a Pandas DataFrame. Here's a summary of the methods you mentioned:
- len(df): Returns the number of rows in the DataFrame.
- len(df.index): Returns the number of rows in the DataFrame using the index.
- df.shape[0]: Returns the number of rows in the DataFrame using the shape attribute.
- df[df.columns[0]].count(): Returns the number of non-null values in a specific column (in this case, the first column).
- df.count(): Returns the count of non-null values for each column in the DataFrame.
- df.size: Returns the total number of elements in the DataFrame (number of rows multiplied by number of columns).
Each method has its own use case and can be chosen based on the specific requirement in your analysis.
First let's create a data frame with values.
Pandas DataFrame row count
Using len()
The len() method can be used to find the number of rows in a Pandas DataFrame. When applied to a DataFrame, len() returns the number of rows, as it counts the number of elements in the DataFrame index.
Or
Using shape[0]
You can use shape[0] to find the number of rows in a Pandas DataFrame. The shape attribute of a DataFrame returns a tuple with the number of rows and columns, and by accessing the first element of the tuple (shape[0]), you get the number of rows.
Another method:
Get Pandas DataFrame column count
Using shape[1]
Using len()
Pandas DataFrame column with row count
Total number of rows and column in DataFrame
Conclusion
To count the number of rows in a Pandas DataFrame, you can use the len() function or access the shape attribute and select the first element (shape[0]). To count the number of columns, you can use the shape attribute and select the second element (shape[1]) or use the len() function on the DataFrame's columns attribute.
- Creating an empty Pandas DataFrame
- How to Check if a Pandas DataFrame is Empty
- How to check if a column exists in Pandas Dataframe
- How to delete column from pandas DataFrame
- How to select multiple columns from Pandas DataFrame
- Selecting multiple columns in a Pandas dataframe based on condition
- Selecting rows in pandas DataFrame based on conditions
- How to Drop rows in DataFrame by conditions on column values
- Rename column in Pandas DataFrame
- Get a List of all Column Names in Pandas DataFrame
- How to add new columns to Pandas dataframe?
- Change the order of columns in Pandas dataframe
- Concatenate two columns into a single column in pandas dataframe
- Use a list of values to select rows from a pandas dataframe
- How to iterate over rows in a DataFrame in Pandas
- How to drop rows/columns of Pandas DataFrame whose value is NaN
- How to Export Pandas DataFrame to a CSV File
- Convert list of dictionaries to a pandas DataFrame
- How to set a particular cell value in pandas DataFrame